Precision Gluino Mass Measurement at the LHC

Gabe Shaughnessy

With H. Baer, V. Barger, H. Summy, L-T. Wang hep-ph/0703298

Mass Measurements

- Mass measurements rely on
 - Bump hunting invariant mass

- Kinematic endpoints if missing energy is present
 - Difficult if cascade decays are long

mSUGRA Parameter Space

- Relic density observations favors specific regions
 - $\tilde{Z}_1 \tilde{\tau}$ coannihilation
 - A-funnel (requires large $\tan \beta$)
 - Focus Point
 - Decoupled scalars & mixed higgsino-gaugino DM

Focus Point Region Spectra

- Neutralinos and charginos typically light
 - soft component of event
- Gluino is heaviest gaugino
 - Hard component of event

Scalar fermions decoupled

few TeV or more

HB/FP Sparticle Masses

Gaugino Production Cross Section

- Dominated by Neutralino-Chargino production
 - Soft events with high lepton multiplicity
- Gluino pair production rate falls rapidly
 - (key to gluino mass measurement)

Minimal SUSY Cuts

• Apply C1 cuts:

$$E_{T}^{miss} > \min(100 \text{ GeV}, 0.2 M_{eff})$$

$$n(jets) \geq 4$$

$$E_{T}(j1, j2, j3, j4) > 100, 50, 50, 50 \text{ GeV}$$

$$S_{T} > 0.2$$
Paige & Hinchliffe

$$M_{eff} = E_T^{miss} + E_T(j1) + E_T(j2) + E_T(j3) + E_T(j4)$$

Characteristics of Gluino signal

• Large jet & b-jet multiplicity

Mercadante, Mizukoshi and Tata

mode	BF
$ ilde{g} ightarrow t ar{t} \widetilde{Z}_1$	3.9%
$\widetilde{g} ightarrow t ar{t} \widetilde{Z}_2$	14.2%
$ ilde{g} ightarrow t ar{t} \widetilde{Z}_3$	15.0%
$ ilde{g} ightarrow t ar{t} \widetilde{Z}_4$	5.6%
$ ilde{g} ightarrow t ar{b} \widetilde{W}_1 + c.c$	26.8%
$\tilde{g} \to t\bar{b}\widetilde{W}_2 + c.c.$	13.9%

Apply jet cuts:

$$n(jets) \ge 7$$

$$n(b - jets) \ge 2$$

- b-tagging: 60% of jets that contains B-meson with $p_T(B) > 15$ GeV and $|\eta(B)| < 1.5$ with $E_T(j) > 50$ GeV and $|\eta(j)| < 3$
 - mistag rate: interpolated between

$$0.7\%$$
 for $E_T(j) < 100 \text{ GeV}$

$$2\% \text{ for } E_T(j) > 250 \text{ GeV}$$

SM Backgrounds

Many SM backgrounds

process	events	σ (fb)	cuts C1 (fb)
$\mathrm{QCD}\;(p_T:50-100\;\mathrm{GeV})$	10^{6}	2.6×10^{10}	-
$\mathrm{QCD}\;(p_T:100-200\;\mathrm{GeV})$	10^{6}	1.5×10^{9}	1513.3
$\mathrm{QCD}\;(p_T:200-400\;\mathrm{GeV})$	10^{6}	7.3×10^{7}	3873.7
$\mathrm{QCD}\;(p_T:400-1000\;\mathrm{GeV})$	10^{6}	2.7×10^6	486.0
${ m QCD}\;(p_T:1000-2400\;{ m GeV})$	10^{6}	1.5×10^4	4.4
$W + jets; W \to e, \mu, \tau \; (p_T(W) : 100 - 4000 \; \text{GeV})$	5×10^5	$3.9 imes 10^5$	1815.9
$Z+jets; Z ightarrow auar{ au}, \ u s \ (p_T(Z): 100-3000 \ { m GeV})$	5×10^5	$1.4 imes 10^5$	845.3
$t ar{t}$	3×10^6	$4.6 imes 10^5$	6415.8
WW, ZZ, WZ	5×10^5	8.0×10^4	9.3
signal (FP5: $m_{\tilde{g}} = 1076 \text{ GeV}$)	2×10^5	1.2×10^{3}	77.5

Most trouble-some backgrounds: top pair production & QCD jets

Event Generation

 $n(jets) \ge 7$, $n(b-jets) \ge 2$

Use Isajet-7.74 to produce 100 fb^{-1} of data

Gluino signal isolated with:

- C1 cuts
- $-n(jets) \ge 7, n(b-jets) \ge 2$
- $-A_T$ ≥ 1400 GeV

Optimized for $M_{\tilde{q}} \approx 1 \text{ TeV}$

Augmented effective mass:
$$A_T = E_T^{miss} + \sum_{leptons} E_T + \sum_{jets} E_T$$

Gluino mass extraction

• Signal rate strongly dependent on gluino mass

Total rate uncertainties:

~3% 100 fb⁻¹ finite statistics uncertainty

15% Theory uncertainty (NLO calculation / squark decoupling)

100% Background uncertainty

⇒ 7-10% uncertainty in gluino mass!

BNL Forum 2007

May 31, 2007

Other sources of uncertainty

• Variability of μ within allowed ranges of Ω_{DM}

Percent variation in BF of typical modes

• Variability of $\tan \beta$:

m_0	$\tan \beta$	$\sigma(C2)$ (fb)
4090	10	9.92
3150	20	10.45
3050	30	11.15
3000	40	11.04
2970	50	11.17

Leptonic signatures of FP region

- Leptons are typically soft
 - From lighter Neutralino and Chargino cascade decays
- Isolate leptonic signature by:
 - C1 cuts
 - $n(isolated\ leptons) ≥ 2$
 - $-n(jets) \ge 4$
 - n(b-jets) ≥ 2
 - $-A_T > 1200 \text{ GeV}$

BNL Forum 2007

May 31, 2007

Neutralino decays

- Neutralino mass splitting below Z threshold in FP region
 - Dilepton invariant mass has edge
- Edge begins to appear with 100 fb⁻¹ of data
- More well defined with more data

 Verify soft lepton component of signal with hard gluino component

⇒ in FP region

BNL Forum 2007

May 31, 2007

Conclusions

- Events in Focus Point region characterized by
 - Hard events gluino pair production
 - Many jets and b-jets
 - Large Augmented effective mass
 - Soft events chargino/neutralino production
 - Many jets and leptons
 - $m_{\tilde{Z}_2} m_{\tilde{Z}_1}$ and $m_{\tilde{Z}_3} m_{\tilde{Z}_1}$ below Z resonance

• Gluino mass can be determined to 7-10% from total rate after isolating hard signal